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Abstract—To predict the moisture distribution in concrete slabs as functions of time, the dependence on
the relevant material characteristics must be considered. The phenomena relevant for moisture, pressure,
and temperature distribution are coupled. A diffusion theory with a linear or a nonlinear coefficient of
diffusivity is not adequate for the description of the drying behavior of hardening concrete. A general
mathematical description for the system has to be based upon a non-equilibrium, irreversible flow of heat
and moisture. The distribution of pore size may be considered to be the most important parameter
affecting moisture transfer in a porous medium. Based upon mass and energy transfer processes and on
the liquid—vapor equilibria, a set of governing differential equations is developed for simultaneous heat
and mass transfer during the pendular state of drying. Numerical examples, using the theory developed,
are illustrated for natural drying of concrete slabs. They show that during the pendular state of drying,
both diffusion and evaporation—condensation mechanisms are the governing processes in drying,

NOMENCLATURE

k,k, permeability tensor, permeability [m?*];

M, averaged mass for mixture;

M,;, molecular  weight of i-component
[kg/mol];

P, total macroscopic pressure [kg/ms?];

K;,  thermal conductivity of i-component
[kgm/s*K];

K, effective thermal conductivity tensor
[kem/s*K];

Di» microscopic local pressure of i-component
[kg/ms?];

Dy» equilibrium vapor pressure of bulk water
[kg/ms?];

a, empirical parameter;

r, hydraulic porous radius or characteristic
length of a porous medium [m];

T, absolute temperature [K];

e, emissivity factor;

R,  gasconstant [ms?/kg];

h, heat-transfer coefficient.

Greek symbols

0, moisture (water) content ;

£, porosity of the porous system

g(t), volume fraction of the i-component
[m®/m?];

¢, mole fraction of water vapor of the
gaseous component [mol/mol];

Pi density of the i-component [kg/m?*];

Wi shear viscosity of i-component [kg/ms];

A, latent heat of evaporization from the
bulk liquid [m?/s?];

o, surface tension of gas—liquid interface

[ke/s?];
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o,  Stefan-Boltzmann [kg/s* K*];

B, empirical constant [kg/s* K];

L, relative permeability = K /K] ;

a, mass-transfer coefficient [mol/m?s].
Subscripts

i, i-component of the mixture;

s, of solid ;

1, of liquid;

g, of gaseous mixture;

gv,  of vapor in a gaseous mixture;

ga, of air in a gaseous mixture.

I. INTRODUCTION

FoORr SEVERAL decades, scientists and engineers have
shown considerable interest in the problem of
moisture migration in porous media. Chemical
engineers, being interested in industrial drying and
catalytic operations, have paid considerably more
attention to the true sorption phenomena and to the
effect of certain characteristics of the surroundings
on the responses inside the drying solids, which often
exhibit a fine pore structure [1]. Soil scientists have
been primarily interested in the movement of
moisture at relatively high saturations in the rather
coarse pore structures [2]. Three theories have been
developed to explain the physical phenomenon of
moisture transfer in porous media: the diffusion
theory [3], the capillary flow theory (or the
nonlinear  diffusion  theory) [4], and the
evaporation—condensation theory [5]. The diffusion
theory of moisture transfer was questioned by
Ceaglske and Hougen [6] with the statement: “The
drying rate of a granular substance is determined not
by diffusion but by capillary action”. Later, Hougen
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et al. [7] compared the theoretical solutions ob-
tained by the diffusion theory and the capillary flow
theory with experimental data for sand, and their
results strongly favor the capillary flow theory.
However, at the pendular state, the liquid threads in
the porous system become progressively discon-
tinuous, and liquid islands form inside the porous
system. Motion due to capillary forces is greatly
reduced. Under these circumstances, both diffusion
and convection in the vapor phase are the primary
mechanisms by which the moisture can be transfer-
red. Thus the temperature in the porous system plays
the important role in mass transfer, and the
temperature gradient becomes a driving force along
with the concentration gradient. With the thermal
energy equation and Fick’s concentration equation,
Philip and DeVries [8] and DeVries [9] extended
previous treatments of the moisture-transfer pro-
blems to include the thermal effects and developed a
set of governing equations. Similar governing equa-
tions for heat and moisture transfer in porous
systems were published also by Luikov [10]. In all of
the previous theoretical treatments of moisture
migration in porous media, the governing differential
equations were inferred in a phenomenological
manner. Recently, based on the principles of trans-
port phenomena [11] and nonequilibrium thermo-
dynamics [12], Harmathy [13] derived a set of
governing differential equations of moisture mig-
ration in porous media, during the pendular state
and gave the solution with particular-reference to
clay bricks. Huang [14] extended the Harmathy
work to the inclusion of the funicular state. Also,
Whitaker [15] developed a theory of drying in
porous media based on the transport equations with
an averaging technique.

Although a large volume of experimental data for
drying of concrete slabs has been assembled over
many decades of research, a reliable theoretical
analysis is not presently available. The structure of
the porous space inside a concrete slab is com-
plicated and is strongly influenced by many factors;
water—cement ratio, degree of carbonation, and age
are just a few {16]. Diffusion theory, which has been
used extensively in the past does not give results in
agreement with experiments. Capillary flow theory,
in which the diffusivity depends on pore water
content, is employed by Pihlajavaara [17], Pihla-
javaara and Viisdnen [18], and Bazant and Najjar
[19] to predict the drying rate in concrete slabs.
However, the coefficient of diffusivity is a complex
function of pore moisture, temperature and other
variables of the porous system. It cannot be defined
as a simple function of pore moisture as done in [ 18]
and [19]. Therefore, in the present paper, a rigorous
analysis will be followed. In other words, the basic
equations for mass and heat transfer derived by
Huang [14] from the laws of physics will be
employed and applied to the study of drying of
hydrated cement paste slabs. The properties of
cement paste are the primary characteristics of

concrete structures. Although the aggregates in
cement paste may affect certain properties of con-
crete, the structure of concrete is mainly determined
by the cement paste. Hence, only the hydrated
cement pastes will be studied in this paper.

The set of governing differential equations for heat
and mass transport in porous media comprises three
nonlinear partial differential equations. To find an
analytical solution to the set of equations would be
extremely difficult. An implicit finite difference meth-
od will be employed for solving the equations. The
average drying rate and the history of the moisture
distribution are obtained for various types of
equilibrium sorption relations. Clearly, the equilib-
rium sorption relation plays the most important role
in the drying process.

I1. POROUS STRUCTURE OF HYDRATED
CEMENT PASTE

The mechanisms of moisture movement in porous
media are dominated by the structure of the porous
system. The diffusion theory, a single-phase diffusion
model, is an oversimplified mechanism to describe
the mass transfer in concrete. Although the capillary
flow theory is more intricate than the diffusion
theory, it is still insufficient to describe such a
phenomenon. For the coarser granular soils, the
capillary flow theory may yield good results in
predicting moisture migration. However, for a po-
rous medium with fine texture, such as paste of
concrete, the surface energy of the pore space, which
is ignored in both the diffusion and capillary flow
theories, significantly affects the movement of mois-
ture [20]. Therefore, a briel description of the
structure of cement paste is needed. In past decades,
a series of studies concerning the structure and the
physical properties of hardened portland cement was
published by Powers and Brownyard [16] and
Powers [21,22]. The pore structure of the cement
paste can be divided into gel pores and capillary
pores. The average diameter of gel pores is 18 A, The
gel pore structure is a result of the growth of very
small irregular cryptocrystalline particles, which may
have the shapes of fibers, rolled foils, tubes and plane
sheets. Therefore, the porous system has an en-
ormous specific surface, which is of the order of 2
x 10° m%/kg by dry weight. The capillary pores are
scattered in a mass of cement gel. Their diameter is
greater than 200A [23]. The magnitude of the
capillary porosity of cement pastes depends on the
water—cement ratio. An increase in water—cement
ratio causes an increase in capillary porosity.
Structural differences among pastes are primarily the
result of the differences in capillary porosity, which
in turn depends on the water—cement ratio and the
chemical composition of cement. Various sizes of gel
pores and capillary pores exist in cement pastes. The
pore size distribution is a major characteristic of the
porous system. The subject has been discussed by
Wittmann [24], and Corey [2] in the area of soil
science.
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Fi1G. 1. Generalized liquid-vapor equilibrium relation for a
cement paste slab.

1. EQUILIBRIUM SORPTION

A wet porous system is a multi-phase medium. In
general it contains all three phases. The liquid and
gaseous phases are contained in the porous system
with the surface of the solid matrix as their
boundaries. In the present paper, the solid matrix is
considered, in a macroscopic sense, as a rigid body
with homogeneous and isotropic pore structures.
The properties of the liquid water phase in the
porous system is different, to some extent, from that
of the bulk free water. Layers of water molecules
next to the surface of the solid matrix are tightly held
by van der Waals attraction. The adsorbed water
film has a limited mobility and can move by a
process of surface diffusion. In the narrow capillary
pores, the liquid water beyond the adsorbed liquid
film is subject to capillary force and has a higher
degree of mobility than the adsorbed liquid film.
Convection is the primary transport mechanism for
this kind of liquid water. In the gaseous phase, the
air and vapor mixture can be transported by both
molecular diffuston and molar convection on a

macroscopic scale. The water vapor concentration in
the mixture can be determined from the equilibrium
sorption relation. In turn, the equilibrium sorption
relation depends on the characteristics of the porous
system, such as the porosity, the specific surface of
the solid matrix, and the pore size distribution. In
the soil science literature, the moisture in the soil
system often is expressed as a function of capillary
pressure [2], whereas in chemical science, the
moisture content in a porous system is expressed as a
function of the relative vapor pressure under a
constant temperature (isotherms) [25]. However, for
the natural drying processes, the change of tempera-
ture in the porous system may be small but not zero.
The moisture content thus must be expressed as a
function of the relative vapor pressure and tempera-
ture. Vassilious and White [26] have proposed that
the equilibrium sorption relation could be expressed
as a functional relation between the moisture content
@ and the “equivalent pore diameter” r.

8=06(r) or r=r(@ )
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where the moisture content can be approximated as

o="n~1-" 2)

€ €
by the reason that the water content in the gaseous
phase is negligible in comparison with that in the
liquid phase. The ¢ denotes the porosity of the
porous system, ¢, the volume fraction of the gaseous
phase, and m the volumetric moisture content. This
functional relation has been used by Harmathy [13]
to study the problem of drying, with particular
reference to clay. Actually, the concept of using the
functional relation between the moisture content and
equivalent pore diameter has been employed by soil
physicists in studying the unsaturated flow in soils
2].
[ ]From the Kelvin equation, r is expressible as a
function of temperature and the relative vapor
pressure, as
20M,, 1

: p 3)
p.R TIn(P,/P))
where ¢ denotes the surface tension, M, the
molecular weight of water, p,, density of water, and
R the gas constant.

Thus, a functional relation among moisture con-
tent 0, temperature T, and the relative vapor
pressure (P,/P%) can be established. It should be
noted that the variable r in (3) should be interpreted
as a characteristic length of pore space. Also the
analysis assumes that practically all portions of the
pore space with pore sizes larger than that given by
the Kelvin equation (3) is accessible to the gaseous
phase. Experimental evidence for the assumption was
given by Corey and Brooks [27]. Figure 1 shows the
experimental curves of sorption equilibrium, 0
= 0(r), for various kinds of the hardened cement
paste [16]. Because only the drying processes will be
considered in this paper, the curves of the desorption
equilibrium are presented. From equations (1)-(3), a
relation between the effective porosity and the water
content is established as

r=

g, = e{1—0[r(¢, P, T)]}. 4)
which must be determined experimentally.
IV. BASIC EQUATIONS FOR HEAT AND
MASS TRANSFER IN CEMENT PASTE
By assuming the existence of local thermal

equilibrium in the porous system, and the gaseous
vapor phase as the major factor of mass transfer, one
can derive the basic equations for heat and mass
transfer from the laws of conservation of mass,
momentum, and energy, and the kinetic theory of
ideal gases. For one-dimensional mass and heat
transfer in a slab of thickness L, the equations are
given in the following form [14]:

fil) JopP oT
Ai—+B—+C—
t at
&2 2T o \?
=D, d:+E ﬁ+Fi—2 +G,.<f/)>
ox ox cx cx
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where the coefficients A4,,..., L, are functions of the
dependent variables ¢, P, T and ¢,. They are defined
as follows:

A, = Az = (1-¢)de, /o) e,
B, 7((78g//(7P)+£g(¢/P), B, =11 —d))(jp
C, = Y(ﬁsg/ﬁT)—sy((b/T), C,=—(1—-¢)0;
D, = De,(M/M), D, = —De,(M, /M)

Ey = {pKSn,). Ey = L(1—)(kOn,)

F, =0, F,=0
G, = —DOM,M), G, = DO, M, /M)
Hy = $W,K0/n,), Hy = (1— )W, (k/n,)

I,=0, [,=0
Mo/M)+ kO [/ ce,)
— (e, /o) +(]
)L(1—¢)(cL/ce,)
—(Cey/0¢)— (]
K, = —DO;(M,M), K,=DO0 M, /M
Ly = —¢Wrlkg/n,), Ly = —(1—d)Wr(k)/n,)
Az = p,0(Ce,/0d), By =p,Q(l,/CP)—¢,
Cy = p,Q(3,/0T)

(5)

Y(le,/0¢)+e,,

DO

Jy = —DO (M, /M)+(kO/n,

+{e— Pw(C) +p,(1 =€)(C,)]
+£gP[¢Mw (1 _d)) Cp)a]/RT

Fy =K, 13 rK/(g " (.sg/FT)
= (0K /d¢,)(Ce,/d)

—DM,M £,P[(C,),—
— (0K /d¢,)(Ge,/OP)
+(KGEP) M (C,) o + M, (C

(C,),J/RTM

ool = @))/RT

in which
04 = ,[(M,,— M,)/M]~ (Ce,/0¢)
—p = (g4/P)+ (Ce,/CP)
Or = (g,/T)+ (Ce, /CT)
Y=¢—-(p,RT/M_P)
W, = ({/P)+ (6{/d¢,)(C¢,/CP)

Wy = ((/T) — (24/0¢,)(e,/OT).

By examining the three basic equations (5), we
note that there are four variables ¢(x,1), P(x,t),
T(x,t) and ¢, Therefore, equations (5) should be
incorporated with equation (4) to form a complete
set of governing differential equations.

The boundary conditions on the surfaces of the
slabare i=0forx=0;i=1forx=L)

ol T

= (-« ( )(d)—d)olv), (6a)
éx D

oT h

= (= 6b
. (—1) <K>(T To:) (6b)
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and

P =Py, (6¢)

where o denotes the mass-transfer coefficient, D the
diffusion coefficient, # the heat-transfer coefficient,
and k thermal conductivity. ¢4, Ty, and Py re-
spectively are the mole fraction of water vapor,
temperature, and pressure of the surroundings of the
porous system. For a slab surrounded by air at
normal conditions (the air pressure is at atmospheric
pressure and the temperature is between 0°C and
60°C), the transfer coefficients may be expressed as

[13] (i=0forx =0;i=1forx = L),
% = ap+1.63 x 107 5[(T,,— T)/B]*/* )

h=275x10%+0e(Ti—THAT,—T) (8)
K =[Ku +Kje,+ K1 —¢e)]'" 9)

where o, denotes the mass-transfer coefficient due to
forced convection. B is a characteristic length of the
slab, o, the Stefan—Boltzmann constant, T, the
temperature of the enclosure of the system and n the
topological constant of the porous system. K,, K,
and K, are the conductivities for gas, liquid, and
solid matrix respectively; ¢, &, and g, are the porosity
of the porous system, the volume fraction for gas,
and the volume fraction for liquid respectively.

The initial conditions for the present study are
given as follows:

¢(x,0)= o, P(x,0)= Py, T(x,0)=To. (10)

Therefore equations (4)-(6) and (10) form a
nonlinear boundary value problem for the simul-
taneous mass and heat transfer in a cement paste
slab.

V. NUMERICAL ANALYSIS AND CALCULATION

Obtaining an analytical solution for the nonlinear
partial differential equations governing flows through
porous media equations (4, 6, 10) would not be
possible. In this paper, an implicit finite difference
scheme is employed for obtaining numerical results.
The first step is to replace the equations by a set of
algebraic finite backward-in-time equations, which
give the relationships among the dependent variables
¢, P, and T at neighboring points in an (x,t) space.
The numerical solution of the simultaneous algebraic
equations thus obtained yields the values of the
dependent variables at the pre-assigned grid points
throughout the domain investigated. In this paper,
one-dimensional heat and mass flows are considered.

In the set of algebraic equations, there are one
space increment Ax and one temporal increment Ar.
The finer meshes for Ax and At will result in a
smaller error. Yet, the magnitude of Ax and At
cannot be chosen arbitrarily. It can be shown [28]
that in order to have a stable solution of equations
(4) and (5), one must properly choose Ax and Ar
such that:

At/(Ax)? <3C

where C is a parameter determined by the ratios of
the coefficients 4,,...,K;. For the problem con-
sidered, the parameter C varies with time ¢ because
those coefficients also vary with time. In order to
achieve a stable computation, a considerably smaller
value of Ar must be used at the beginning stage of
the computational simulation than at the advanced
stages, due to errors associated with the initial guess
of sorption equilibrium.

The derivatives of ¢ with respect to x at a given
time ¢ can be expressed as:

[ad)(t):l - b (t— A=, (t—At)

Ox 2Ax

2Ax 1y
[?ﬁ(t)}z - [@H(r—m)—qs,--l(z—m)}z
ox 4 2Ax
+2.¢i+1(l_A[)‘¢i—1([—At)
2Ax
Ap; 1 —AD;_
b1 =890 12
2Ax

[@%(t)] D1 (t—A) =2t = A+ ¢ (1= A1)
ox? (Ax)?
Adiy —20¢;+Ad; .,
(4,2)

(13)

and

14
ot At (14
where Ag; = ¢,(t) — ¢;(t — At).

Similar finite difference expressions can be written
for the derivatives of the other dependent variables P
and T. For example, the cross-product of derivatives
is

[C’W’(t)J [”P(t)}
ox ;L ox J;

- i (t—AL) = (t—Al)

o] s

2Ax
P (t—=A—P;_(t—At)
X
2Ax
+¢i+1(I_AI)_¢i—1([—AI).APi+1_APi—l
2Ax 2Ax
+Pi+l(t_At)_Pi—l(t—At).A(bH-l_A¢’i—1
2Ax 2Ax '

(15)

Similar finite-difference expansions can be written
for the other cross-product of derivatives of other
dependent variables.

It should be noted that the coefficients 4,,...,K; (i
= 1,2,3) are functions of the three dependent
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variables and the following material characteristics:
specific heat, density and thermal conductivity of all
components of the porous system, porosity and
permeability of the solid matrix, diffusion coefficient
of water vapor in air, viscosity of the gaseous
mixture, sorption equilibrium relation and heat of
sorption. The numerical solutions for the histories of
moisture distribution, temperature and pressure in a

concrete slab are obtained with a digital computer.
Also, the average drying rate for a cement paste slab
is calculated.

Three typical liquid—-vapor equilibrium curves for
cement paste are shown in Fig. 1. Curve A shows
that the pore sizes of the cement paste are quite
uniform and rather coarse; Curve D shows that the
pore sizes of the cement paste are well distributed
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and that the structure of the solid matrix has a fine
texture. In other words, cement paste D has a higher
value of specific surface than cement paste A. The
curve B shows another pore structure of cement
paste.

Figure 2 shows the average drying rate for cement
pastes A, B, and D. Evidently, cement paste A will
dry faster than the other cases. Figures 3 and 4 show
the histories of moisture, temperature, and pressure
distribution inside a slab of cement paste A with a
thickness of 1.0cm. Some irregularities appear in the
moisture distribution curves. The irregularities are
caused by the capillary actions of moisture in intensities
of the solid matrix [ 6]. Figures 5and 6 give the histories
of moisture, temperature, and pressure distribution in
the slabs of cement paste B and D, respectively.

V1. CONCLUSIONS AND REMARKS

From the history of moisture distribution, the
curves reveal that at high pore saturation (funicular
saturation), the moisture movement is relatively
independent of the properties of the porous system
and dependent on the parameters characterizing the
surroundings, such as temperature, velocity, and the
relative humidity of the ambient air. When the liquid
threads in the porous medium begin to break down,
and capillary action in the pore spaces set in, the
internal characteristics of the porous system play the
primary role in moisture migration. The curve of
moisture distribution is no longer convex. At the
pendular saturation stage, liquid moisture has to be
vaporized first in order to move from one location to
another [29]. The drying rate varies with time and is

different from one location to another throughout
the thickness of the slab. In general, the drying rate is
slowed down. At low moisture saturation, vapor flux
is the only mechanism of moisture transfer in the
system. Because of the phenomenon of pure adsorp-
tion, the drying rate becomes very, very slow.

Evidently, the sorption equilibrium curve is one of
the most important factors in determining the
mechanisms of moisture transfer. In turn, it de-
termines the drying rate in the desorption processes.
The rate of moisture transfer is rather high in the
solid matrix with a fairly uniform pore structure, a
porous medium composed mostly of particles of a
particular size. The uniform porous medium has a
low value of specific surface. However, good cement
pastes have a high specific surface, and thus can hold
a significant amount of moisture in the equilibrium
state. Therefore, moisture migration in a good
cement paste is much slower than that in a poor
cement paste with a high magnitude of capillary
porosity, or in a granular material such as sand.

In the present theory, the solid matrix is assumed
to be a rigid structure, i.e. the porosity of the solid
matrix is constant. Therefore, the problems of creep,
hydration, and carbonation in concrete are beyond
the scope of this study.
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APPENDIX

Table 1. Values of the constants used in the equations

(cement paste)

Type of
const. Symbol Value Unit
Physic. R 83149 x 10 '*  kgm?/s2 K mol
const. a, 5670 x 1078 kg/sd K*
(Cp), 1.0063 x 10? m?/s2K?
€. 0879x10° m?/s? K>
(€., 18646x10° m?/s? K>
(Cpy 41793 x 103 m2/s?K?
D 0.256 x 1074 m?/s
Physical e 0.8
properties  k, 0.02613 kgm/s* K
K, 14422 kgm/s? K
k,, 0.616 kgm/s® K
M, 28952x107%  kg/mol
M, 18.016 x 103 kg/mol
3 043 m?>/m3
R 1.83x 1073 kg/ms
K¢ 2.50 x 10714 m?
A 2.4418 x 106 m?/s?
o, 22x103 kg/m?
0w 099707 x 10°  kg/m?
Geom. L 0.01 m
const. B 0.1839 m
Empirical a 1.209658 x 107! ms?/kg
const. b 5080 K
n 0.25
B 0.167 x 1073 kg/s’K
v 1.0
G, 121.2x 1073 kg/s?
Initial P 1.01325 x 10° kg/ms?
conditions (m;,;), 0.17 m>/m3
(Mini) 5 0.20 m?/m?
(my)p 023 m?®/m3
T 294.8 K
Boundary doo = 0.003548  mol/mol
conditions $o; = 0003548  mol/mol
- Tpo = 298.5 K
0 Ty, = 298.5 K
T T,y = 298.5 K
. T., = 298.5 K
op 0.0 mol/m?s
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TRANSFERT DE CHALEUR ET D'HUMIDITE DANS DES PLAQUES
DE BETON

Résumé—Pour prédire la distribution d’humidite dans des plagues de béton ¢n fonction du temps,
on considére les caractéristiques du matériau et leur dépendance. Les phénoménes concernant les
distributions d"humidité, de pression et de température sont couplés. Une théorie de diffusion, avec un
coefficient de diffusion linéaire ou non, n'est pas adaptée a la description du séchage du béton. Un modéle
mathématique général est basé sur Pécoulement irréversible et hors d'équilibre de la chaleur et de
I'humidité. La distribution de la taille des pores peut étre considérée comme le paramétre le plus important
qui intervient dans le transfert d’humidité dans un milieu porcux. Basé sur les mécanismes de transfert
de chaleur et de masse ct sur I'équilibre liquide-vapeur, un systéme d'équations aux dérivées partielles
est formulé pour les transferts simultanés de chaleur et de masse pendant 1'état pendulaire de séchage.
Des exemples numeriques, & partir de la théorie développée, sont illustrés pour le séchage naturel de
plaques de béton. IIs montrent que pendant 1'état pendulaire de séchage, a la fois la diffusion et
I"évaporation-condensation sont les mécanismes qui gouvernent lc séchage.

WARMEUBERGANG UND FEUCHTIGKEITSTRANSPORT IN BETONPLATTEN

Zusammenfassung —Bei der Berechnung der Feuchtigkeitsverteilung in Betonplatten als Funktion der
Zeit muBl die Abhingigkeit des Vorgangs von den wesentlichen StoffgroBen betrachtet werden. Die
Phidnomene, die Feuchtigkeits-, Druck- und temperaturverteilung bestimmen, sind gekoppelt. Eine
Diffusionstheorie mit einem linearen oder nichtlinearen Diffusionskoeffizienten ist zur Beschreibung des
Trockenvorgangs von abbindendem Beton nicht ausreichend. Bei einer allgemeinen mathematischen
Beschreibung des Systems muB von einer irreversiblen Nicht-Gleichgewichtsstrémung von Wirme und
Feuchtigkeit ausgegangen werden. Dic Verteilung der PorengréBe kann als der Parameter mit dem
groBten EinfluB auf den Feuchtigkeitstransport in einem porésen Medium angesechen werden. Ausgehend
von Stoff—und Energielibertragungsprozessen und dem Fliissigkeits-Dampf-Gleichgewicht wurde ein
Satz von maBgeblichen Differentialgleichungen fiir gleichzeitigen Wirmetibergang und Stoffaustausch
beim Trocknen entwickelt. Mit Hilfe der entwickelten Theorie werden Zahlenbeispiele fiir natiirliches
Trocknen von Betonplatten erldutert. Die Beispiele zeigen. dall sowohl Diffusion als auch
Verdampfungs-Kondensationsmechanismen den Vorgang bestimmende Phinomene beim Trocknen sind.

TEIJIO- U BJJATOOBMEH B BETOHHBbIX TJIMTAX

Annoranns — OnpenensieTcs pacrnpelesieHHe Bjard B OETOHHBIX IJIMTAX C COOTBETCTBYIOLUMMH
XapakTePHCTHKAMH Matepuana. [IpoBOAMTCA COBMECTHOE pacCMOTDEHHE SIBJICHHMIA, CBA3aHHBIX C pac-
npefeiCHHEM BIIATH, NaBJeHUs ¥ TEMIEPATYPel. Y paBHEHHEe NH(PDY3HUH C JIHHEAHBIM WIH HEJHHEHHBIM
k0dpduuHeHTOM AH(DYIHH He MOXET HCNOJb30BATHLCA /IS ONMMCAHWS MPOLIECCa CYLIKH TBEPACIOILETO
6eroHa. Oflee MaTeMaTHYECKOE OMHCAHHME CHCTEMbl NOJ/KHO OCHOBBIBATHCS HA HEPABHOBECHBIX
HeoOpaTHMBIX NpOLieCCaX MepeHoca Temya M Brnard. PacnpendeneHne nop no pasmepam SBASAETCS,
BEPOATHO, HauboJiee BAXHBIM NAPAMETPOM, BIIMAOWIHM HA MEPEHOC BJArH B TOPHCTON cpere.
C y4éTOM npouecCcOB MEPEHOCA MAacChl M JHEPIMM, a TakkKe PABHOBECHS MEXAY XHIAKOCTbIO H
NapoM BhIBENEHA CHCTEMA OCHOBHbIX AH(hEpeHIHANLHBIX YPaBHEHHH [UIS COBMECTHOIO TNepeHoca
Termja H MacChl B HEYCTAHOBHBUIEMCS peXHMeE CYIIKH. [1peanokeHHBIH METOA HCMOb30BaH IS
HUCJIEHHOTO pacuéTa MpOoLecca eCTECTBEHHOW CYIUKH OCTOHHBIX MIHMT. Pe3yabTaThl NOKA3BIBAKOT, YTO
B HEYCTAHOBHBLUEMCS PEXHME CYLUKH ONPENENAIOIHMH [POLECCAMH ABJAIOTCA Kak AH(DYIHOHHBINA.
TaK M HCIapHTENbHOKOHIEHCALHOHHBIH MEXaHH3MBI.



