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Abstract-To predict the moisture distribution in concrete slabs as functions of time, the dependence on 
the relevant material characteristics must be considered. The phenomena relevant for moisture, pressure, 
and temperature distribution are coupled. A diffusion theory with a linear or a nonlinear coefficient of 
diffusivity is not adequate for.the description of the drying behavior of hardening concrete. A general 
mathematical description for the system has to be based upon a non-equilibrium, irreversible flow of heat 
and moisture. The distribution of pore size may be considered to be the most important parameter 
affecting moisture transfer in a porous medium. Based upon mass and energy transfer processes and on 
the liquid&vapor equilibria, a set of governing differential equations is developed for simultaneous heat 
and mass transfer during the pendular state of drying. Numerical examples, using the theory developed, 
are illustrated for natural drying of concrete slabs. They show that during the pendular state of drying. 

both diffusion and evaporation-condensation mechanisms are the governing processes in drying. 

NOMENCLATURE 

permeability tensor, permeability [m’] ; 
averaged mass for mixture ; 
molecular weight of i-component 

[kg/m011 ; 
total macroscopic pressure [kg/m s2] ; 
thermal conductivity of i-component 

[kg m/s” Kl ; 
effective thermal conductivity tensor 

[kg m/s3 Kl ; 
microscopic local pressure of i-component 

[kg/m s21 ; 
equilibrium vapor pressure of bulk water 

[kg/m ~‘1; 
empirical parameter ; 
hydraulic porous radius or characteristic 
length of a porous medium [m] ; 
absolute temperature [K] ; 
emissivity factor; 
gas constant [m ?/kg] ; 
heat-transfer coefficient. 

Greek symbols 

8, moisture (water) content ; 
E, porosity of the porous system; 

&itt)i volume fraction of the i-component 

[m3/m31; 
4, mole fraction of water vapor of the 

gaseous component [mol/mol] ; 

Pi, density of the i-component [kg/m31 ; 

Bit shear viscosity of i-component [kg/m s] ; 
i, latent heat of evaporization from the 

bulk liquid [m2/s2] ; 
6, surface tension of gas-liquid interface 

CWs21 ; 

*This work is supported by the National Science 
Foundation under Grant No. 2668. 

0s Stefan-Boltzmann [kg/s3 K4] ; 

I% empirical constant [kg/s2 K] ; 
i, relative permeability = Kg/K:; 

% mass-transfer coefficient [mol/m2 s]. 

Subscripts 

1, i-component of the mixture; 

& of solid ; 
1, of liquid; 

9, of gaseous mixture; 

P> of vapor in a gaseous mixture; 

W> of air in a gaseous mixture. 

1. INTRODUCTION 

FOR SEVERAL decades, scientists and engineers have 
shown considerable interest in the problem of 
moisture migration in porous media. Chemical 
engineers, being interested in industrial drying and 
catalytic operations, have paid considerably more 
attention to the true sorption phenomena and to the 
effect of certain characteristics of the surroundings 
on the responses inside the drying solids, which often 
exhibit a fine pore structure [l]. Soil scientists have 
been primarily interested in the movement of 
moisture at relatively high saturations in the rather 
coarse pore structures [2]. Three theories have been 
developed to explain the physical phenomenon of 
moisture transfer in porous media: the diffusion 
theory [3], the capillary flow theory (or the 
nonlinear diffusion theory) [4], and the 
evaporation-condensation theory [S]. The diffusion 
theory of moisture transfer was questioned by 
Ceaglske and Hougen [6] with the statement: “The 
drying rate of a granular substance is determined not 
by diffusion but by capillary action”. Later, Hougen 
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et al. [7] compared the theoretical solutions ob- 
tained by the diffusion theory and the capillary flow 

theory with experimental data for sand, and their 
results strongly favor the capillary flow theory. 
However, at the pendular state, the liquid threads in 
the porous system become progressively discon- 
tinuous, and liquid islands form inside the porous 
system. Motion due to capillary forces is greatly 
reduced. Under these circumstances, both diffusion 
and convection in the vapor phase are the primary 
mechanisms by which the moisture can be transfer- 
red. Thus the temperature in the porous system plays 
the important role in mass transfer, and the 
temperature gradient becomes a driving force along 
with the concentration gradient. With the thermal 

energy equation and Fick’s concentration equation, 
Philip and DeVries [S] and DeVries [9] extended 
previous treatments of the moisture-transfer pro- 
blems to include the thermal effects and developed a 

set of governing equations. Similar governing equa- 
tions for heat and moisture transfer in porous 
systems were published also by Luikov [lo]. In all of 

the previous theoretical treatments of moisture 
migration in porous media, the governing differential 
equations were inferred in a phenomenological 

manner. Recently, based on the principles of trans- 
port phenomena [l I] and nonequilibrium thermo- 
dynamics [ 121, Harmathy [13] derived a set of 
governing differential equations of moisture mig- 
ration in porous media, during the pendular state 
and gave the solution with particular-reference to 
clay bricks. Huang [14] extended the Harmathy 
work to the inclusion of the funicular state. Also, 
Whitaker [15] developed a theory of drying in 
porous media based on the transport equations with 
an averaging technique. 

Although a large volume of experimental data for 
drying of concrete slabs has been assembled over 
many decades of research, a reliable theoretical 
analysis is not presently available. The structure of 

the porous space inside a concrete slab is com- 
plicated and is strongly influenced by many factors; 
water-cement ratio, degree of carbonation, and age 
are just a few [16]. Diffusion theory, which has been 
used extensively in the past does not give results in 
agreement with experiments. Capillary flow theory, 
in which the diffusivity depends on pore water 
content, is employed by Pihlajavaara [17], Pihla- 
javaara and VCisHnen [18], and Bazant and Najjar 
[19] to predict the drying rate in concrete slabs. 
However, the coefficient of diffusivity is a complex 
function of pore moisture, temperature and other 
variables of the porous system. It cannot be defined 
as a simple function of pore moisture as done in [ 181 
and [19], Therefore, in the present paper, a rigorous 
analysis will be followed. In other words, the basic 
equations for mass and heat transfer derived by 
Huang [14] from the laws of physics will be 
employed and applied to the study of drying of 
hydrated cement paste slabs. The properties of 
cement paste are the primary characteristics of 
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concrete structures. Although the aggregates in 
cement paste may affect certain properties of con- 

crete, the structure of concrete is mainly determined 
by the cement paste. Hence, only the hydrated 
cement pastes will be studied in this paper. 

The set of governing differential equations for heat 

and mass transport in porous media comprises three 
nonlinear partial differential equations. To find an 
analytical solution to the set of equations would be 
extremely difficult. An implicit finite diference meth- 

od will be employed for solving the equntic>ns. The 

average drying rate and the history of the moisture 
distribution are obtained for various types of 
equilibrium sorption relations. Clearly, the equilib- 
rium sorption relation plays the most important role 
in the drying process. 

Il. POROUS STRUCTURE OF HYDRATED 
CEMENT PASTE 

The mechanisms of moisture movement in porous 
media are dominated by the structure of the porous 
system. The diffusion theory, a single-phase diffusion 
model, is an oversimplified mechanism to describe 
the mass transfer in concrete. Although the capillary 
flow theory is more intricate than the diffusion 
theory, it is still insufficient to describe such a 

phenomenon. For the coarser granular soils, the 
capillary flow theory may yield good results in 
predicting moisture migration. However, for a po- 
rous medium with fine texture, such as paste of 
concrete, the surface energy of the pore space, which 
is ignored in both the diffusion and capillary flow 
theories, significantly affects the movement of mois- 
ture [20]. Therefore, a brief description of the 
structure of cement paste is needed. In past decades, 
a series of studies concerning the structure and the 
physical properties of hardened portland cement was 
published by Powers and Brownyard [16] and 
Powers [21,22]. The pore structure of the cement 
paste can be divided into gel pores and capillary 
pores. The average diameter of gel pores is 18 A. The 
gel pore structure is a result of the growth of very 
small irregular cryptocrystalline particles, which may 
have the shapes of fibers, rolled foils, tubes and plane 
sheets. Therefore, the porous system has an en- 
ormous specific surface, which is of the order of 2 
x lo5 m*/kg by dry weight. The capillary pores are 

scattered in a mass of cement gel. Their diameter is 
greater than 2OOA [23]. The magnitude of the 
capillary porosity of cement pastes depends on the 
water-cement ratio. An increase in water-cement 
ratio causes an increase in capillary porosity. 
Structural differences among pastes are primarily the 
result of the differences in capillary porosity, which 
in turn depends on the water-cement ratio and the 
chemical composition of cement. Various sizes of gel 
pores and capillary pores exist in cement pastes. The 
pore size distribution is a major characteristic of the 
porous system. The subject has been discussed by 
Wittmann [24], and Corey [2] in the area of soil 
science. 
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FIG. 1. Generalized liquid-vapor equilibrium relation for a 
cement paste slab. 

III. EQUILIBRIUM SORPTION 

A wet porous system is a multi-phase medium. In 
general it contains all three phases. The liquid and 
gaseous phases are contained in the porous system 
with the surface of the solid matrix as their 
boundaries. In the present paper, the solid matrix is 
considered, in a macroscopic sense, as a rigid body 
with homogeneous and isotropic pore structures. 
The properties of the liquid water phase in the 
porous system is different, to some extent, from that 
of the bulk free water. Layers of water molecules 
next to the surface of the solid matrix are tightly held 
by van der Waals attraction. The adsorbed water 
film has a limited mobility and can move by a 
process of surface diffusion. In the narrow capillary 
pores, the liquid water beyond the adsorbed liquid 
film is subject to capillary force and has a higher 
degree of mobility than the adsorbed liquid film. 
Convection is the primary transport m~hanism for 
this kind of liquid water. In the gaseous phase, the 
air and vapor mixture can be transported by both 
molecular diffusion and molar convection on a 

macroscopic scale. The water vapor concentration in 
the mixture can be determined from the equilibrium 
sorption relation. In turn, the equilibrium sorption 
relation depends on the characteristics of the porous 
system, such as the porosity, the specific surface of 
the solid matrix, and the pore size distribution. In 
the soil science literature, the moisture in the soil 
system often is expressed as a function of capillary 
pressure [2], whereas in chemical science, the 
moisture content in a porous system is expressed as a 
function of the relative vapor pressure under a 
constant temperature (isotherms) [25]. However, for 
the natural drying processes, the change of tempera- 
ture in the porous system may be small but not zero. 
The moisture content thus must be expressed as a 
function of the relative vapor pressure and tempera- 
ture. Vassilious and White [26] have proposed that 
the equilibrium sorption relation could be expressed 
as a functional relation between the moisture content 
0 and the “equivalent pore diameter” r. 

B = e(r) or r = r(O) (I) 



where the moisture content can be approximated as 

Q=“_f-!! (2) 
& t’ 

by the reason that the water content in the gaseous 
phase is negligible in comparison with that in the 
liquid phase. The E denotes the porosity of the 
porous system, sg the volume fraction of the gaseous 
phase, and nr the volumetric moisture content. This 
functional relation has been used by Harmathy [13] 
to study the problem of drying, with particular 
reference to clay. Actually, the concept of using the 
functional relation between the moisture content and 

equivalent pore diameter has been employed by soil 
physicists in studying the unsaturated flow in soils 

PI. 
From the Kelvin equation, r is expressible as a 

function of temperature and the relative vapor 
pressure, as 

2oM, 1 
r= 

p,R Tln(P,/P~) 
(3) 

where o denotes the surface tension, M, the 

molecular weight of water. pw density of water, and 
R the gas constant. 

Thus, a functional relation among moisture con- 
tent 0, temperature T, and the relative vapor 
pressure (PJP:) can be established. It should be 
noted that the variable r in (3) should be interpreted 
as a characteristic length of pore space. Also the 
analysis assumes that practically all portions of the 
pore space with pore sizes larger than that given by 
the Kelvin equation (3) is accessible to the gaseous 
phase. Experimental evidence for the assumption was 
given by Corey and Brooks [27]. Figure 1 shows the 
experimental curves of sorption equilibrium, 0 
= 0(v), for various kinds of the hardened cement 
paste [ 161. Because only the drying processes will be 
considered in this paper, the curves of the desorption 
equilibrium are presented. From equations (l)-(3), a 
relation between the effective porosity and the water 
content is established as 

sg = s[l -O[r(+,P, T)]). 

which must be determined experimentally. 

(4) 

Iv. BASIC EQUATIONS FOR HEAT AND 
MASS TRANSFER IN CEMENT PASTE 

By assuming the existence of local thermal 
equilibrium in the porous system, and the gaseous 
vapor phase as the major factor of mass transfer, one 
can derive the basic equations for heat and mass 
transfer from the laws of conservation of mass, 
momentum, and energy, and the kinetic theory of 
ideal gases. For one-dimensional mass and heat 
transfer in a slab of thickness L, the equations are 
given in the following form [ 141: 
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(5) 

where the coefficients Ai,.. .,Li are functions of the 

dependent variables 4. P, T and ag. They are defined 
as follows: 

It, = Y(?c,/i~)+e,, A, = (1 -CJb)(iE,/&#I)-Eg 

B, = Y(?Eg/iP)+ES(c#qP), B, = (l-4)0’, 

C’, = Y(?E~/?T)-E,(&T), C, = -(l -d)O, 

D, = Dc,(M,/M), D, = -DE,(M,,!M) 

E, = S&k&J. E, = ((1 -$)(k,o/r/,) 

F, = 0, F, =o 

G, = -Do,,,(M,/M), G, = DO,(M,/M) 

H, = W’Jk;lqJ H, = (1-4)W,(k,o/vl,) 

I,=O, I,=0 

_ 

J, = DO,(M,,‘M) + (k;/qg)[&?;/&,) 

- (s&,:ag) + i] 

J, = -DiT,(M,lM)+(k,o/‘g,)[(l -+)((?;/?E,) 

- (?E,;&b) - i] 

K, = -DO,(M,jM), K, = D&(M,;IM) 

L, = -$Wk,o/rl,)> L = -(I -4)W(k,oh,) 

A, = p,Q(?~,/id), B, = pwQ(?~,/(‘P)-~, 

C3 = p,Q(%J~T) 

+[(E--Bg)Pw(Cp)w+I)s(l -E)(C,,)s] 

+@[W,(C,),+ (I-4)Mz(C,),I!RT 

F, = K, I, = (?K/c?E,)(&,/?T) 

K, = (X/i%,)(&&b) 

- DM,M,+‘[(C,), - (C,),]IRTM 

L, = (JK/‘$J~E~/(:P) 

+ (K,oiP)[M,(C,),4 + M,(C,),(l - 4)lIRT 

in which 

o$ = cs[(M,,- MJM] - (SE,/?~) 

oP = (ES/P) + (?E,/c;P) 

OT = (ES/T) + (&,/?T) 

Y = c,b - (p,RT/M,P) 

w, = (i/P) + (?;l&g)(~Eg/iP) 

Vi’, = (i/T) - (?;jde,)(&,/dT). 

By examining the three basic equations (5), we 
note that there are four variables 4(.x, t), P(x, t), 

T(x, t) and Ed. Therefore, equations (5) should be 
incorporated with equation (4) to form a complete 
set of governing differential equations. 

The boundary conditions on the surfaces of the 
slab are (i = 0 for x = 0; i = 1 for x = L) 

(6a) 

(6b) 
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and 

P = poi. (6~) 

where t( denotes the mass-transfer coefficient, D the 
diffusion coefficient, h the heat-transfer coefficient, 

and k thermal conductivity. 40, To, and P, re- 
spectively are the mole fraction of water vapor, 
temperature, and pressure of the surroundings of the 
porous system. For a slab surrounded by air at 
normal conditions (the air pressure is at atmospheric 
pressure and the temperature is between 0°C and 
6o”C), the transfer coefficients may be expressed as 

[13] (i = 0 for x = 0; i = 1 for x = L), 

a = cc,+ 1.63 x lo-‘[(To,- T)/B]1’4 (7) 

h = 2.75 X 10*Cc+U,e(T~-T4)/(T,i-T) (8) 

K = [K;I&g+K;&,+K:(l-&)]l’” (9) 

where c(~ denotes the mass-transfer coefficient due to 
forced convection. B is a characteristic length of the 
slab, os the Stefan-Boltzmann constant, T, the 
temperature of the enclosure of the system and II the 
topological constant of the porous system. K,, K, 
and K, are the conductivities for gas, liquid, and 

solid matrix respectively; E, Ed and Ed are the porosity 
of the porous system, the volume fraction for gas, 
and the volume fraction for liquid respectively. 

The initial conditions for the present study are 

given as follows: 

4(x, 0) = 40, P(x,O) = P,,,, 7% 0) = T,. (10) 

Therefore equations (4)-(6) and (10) form a 
nonlinear boundary value problem for the simul- 
taneous mass and heat transfer in a cement paste 

slab. 

V. NUMERICAL ANALYSIS AND CALCULATION 

Obtaining an analytical solution for the nonlinear 

partial differential equations governing flows through 
porous media equations (4, 6, 10) would not be 
possible. In this paper, an implicit finite difference 
scheme is employed for obtaining numerical results. 
The first step is to replace the equations by a set of 
algebraic finite backward-in-time equations, which 
give the relationships among the dependent variables 
4, P, and T at neighboring points in an (x, t) space. 
The numerical solution of the simultaneous algebraic 
equations thus obtained yields the values of the 
dependent variables at the pre-assigned grid points 
throughout the domain investigated. In this paper, 
one-dimensional heat and mass flows are considered. 

In the set of algebraic equations, there are one 
space increment Ax and one temporal increment At. 
The finer meshes for Ax and At will result in a 
smaller error. Yet, the magnitude of Ax and At 
cannot be chosen arbitrarily. It can be shown [28] 
that in order to have a stable solution of equations 
(4) and (5), one must properly choose Ax and At 
such that: 

Ati( < +C 

where C is a parameter determined by the ratios of 

the coefficients Ai,. ., Ki. For the problem con- 
sidered, the parameter C varies with time t because 

those coefficients also vary with time. In order to 

achieve a stable computation, a considerably smaller 
value of At must be used at the beginning stage of 
the computational simulation than at the advanced 
stages, due to errors associated with the initial guess 
of sorption equilibrium. 

The derivatives of 4 with respect to x at a given 
time t can be expressed as: 

am 2 L-1 = ax i 

2Ax 

A4i+l 
+ 

-A4i-1 (11) 

2Ax 

~i.l(t-At)-~i_l(t-At) 2 

L 2Ax 1 +,,~i-,l(t-‘t)-~i-I(t-At) 
2Ax 

A4i-t-i-A4i-1 
X 

2Ax 
(12) 

+ 
A4i+l -2A~i+A~i_1 

(A,2) 
(13) 

and 

(14) 

where A4i = 4,.(t) - c#~~(t - At). 
Similar finite difference expressions can be written 

for the derivatives of the other dependent variables P 
and T. For example, the cross-product of derivatives 

i IL 

W) ?P(t) 

o’x i 1 2.x i 

‘c ~i+l(t-‘t)-_i-,(t-‘t) 

2Ax 

Piil(t-At)-Pi_,(t-At) 
X 

2Ax 

&,l(t-At)-&,(t-At) APi.,-APi+, 

2Ax 2Ax 

Pi+l(t-At)-Pi-l(t-At) A&+l-A+i-l 
+-- 

2Ax 2Ax 

(15) 

Similar finite-difference expansions can be written 
for the other cross-product of derivatives of other 
dependent variables. 

It should be noted that the coefficients A,, . . , Ki (i 
= 1,2,3) are functions of the three dependent 
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FIG. 2. Average moisture drying rate. 
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Heat and moisture transfer in concrete slabs 

0.16 

c1 
E 

; 0.15 

E 014 

0.13 

26 

1 

25 

t 

+:t5.0 

24- 0” + 9.0 

fl.!m 

- 23~ t =a7 

+;0.4 

* t=a2 

22 - t =0.1 

21.65, 110.0 ” 

21 
0 0.1 0.2 0.3 0.4 0.5 

X lo- lm 

2oc 

180 

160 

N 
r/ 140 
E \ 
,” 12c 

; 
P 

IO0 
E 
0 
a 50 
I 

-60 

40 

FIG. 4. Distributions of moisture, temperature and pressure in a 0.01 m thick cement paste slab (Case A). 

E 
0.16 

1 I 8 s m 1 
0 0.1 0.2 0.3 0.4 0.5 

X I 0-‘Cl 

26 

25 

23 

60- 40-1 
-1 

X 10 m 

I 5 

FIG. 5. Distributions of moisture and pressure in a 0.01 m thick cement paste slab (Case B). 

variables and the following material characteristics: 
specific heat, density and thermal conductivity of all 
components of the porous system, porosity and 
permeability of the solid matrix, diffusion coefficient 
of water vapor in air, viscosity of the gaseous 
mixture, sorption equilibrium relation and heat of 
sorption. The numerical solutions for the histories of 
moisture distribution, temperature and pressure in a 

concrete slab are obtained with a digital computer. 
Also, the average drying rate for a cement paste slab 
is calculated. 

Three typical liquid-vapor equilibrium curves for 
cement paste are shown in Fig. 1. Curve A shows 
that the pore sizes of the cement paste are quite 
uniform and rather coarse; Curve D shows that the 
pore sizes of the cement paste are well distributed 
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and that the structure of the solid matrix has a fine 

texture. In other words, cement paste D has a higher 
value of specific surface than cement paste A. The 
curve B shows another pore structure of cement 
paste. 

Figure 2 shows the average drying rate for cement 

pastes A, B, and D. Evidently, cement paste A will 
dry faster than the other cases. Figures 3 and 4 show 
the histories of moisture, temperature, and pressure 
distribution inside a slab of cement paste A with a 
thickness of l.Ocm. Some irregularities appear in the 
moisture distribution curves. The irregularities are 
caused by thecapillaryactionsofmoistureinintensities 
ofthe solid matrix [6]. Figures 5 and 6 give the histories 
of moisture, temperature, and pressure distribution in 
the slabs of cement paste B and D, respectively. 

VI. CONCLUSIONS AND REMARKS 

From the history of moisture distribution, the 

curves reveal that at high pore saturation (funicular 
saturation), the moisture movement is relatively 
independent of the properties of the porous system 
and dependent on the parameters characterizing the 
surroundings, such as temperature, velocity, and the 
relative humidity of the ambient air. When the liquid 
threads in the porous medium begin to break down, 
and capillary action in the pore spaces set in, the 
internal characteristics of the porous system play the 
primary role in moisture migration. The curve of 
moisture distribution is no longer convex. At the 
pendular saturation stage, liquid moisture has to be 
vaporized first in order to move from one location to 
another [29]. The drying rate varies with time and is 

different from one location to another throughout 
the thickness of the slab. In general, the drying rate is 
slowed down. At low moisture saturation, vapor flux 
is the only mechanism of moisture transfer in the 
system. Because of the phenomenon of pure adsorp- 
tion, the drying rate becomes very, very slow. 

Evidently, the sorption equilibrium curve is one of 

the most important factors in determining the 
mechanisms of moisture transfer. In turn, it de- 
termines the drying rate in the desorption processes. 
The rate of moisture transfer is rather high in the 

solid matrix with a fairly uniform pore structure, a 
porous medium composed mostly of particles of a 
particular size. The uniform porous medium has a 
low value of specific surface. However, good cement 
pastes have a high specific surface, and thus can hold 
a significant amount of moisture in the equilibrium 
state. Therefore, moisture migration in a good 
cement paste is much slower than that in a poor 
cement paste with a high magnitude of capillary 
porosity, or in a granular material such as sand. 

In the present theory, the solid matrix is assumed 
to be a rigid structure, i.e. the porosity of the solid 
matrix is constant. Therefore, the problems of creep, 
hydration, and carbonation in concrete are beyond 
the scope of this study. 
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APPENDIX 

Table 1. Values of the constants used in the equations 
(cement paste) 

Type of 
const. Symbol Value Unit 

Physic. R 8.3149 x lo-l4 kg m2/s2 K mol 
const. 0, 5.670 x lo- * kg/s3 K4 

(C,), 1.0063 x lo3 m2/s2 K2 

(C,), 0.879 X lo3 m’/s’ K2 

(C,), 1.8646 x lo3 m2js2 K2 

(C,), 4.1793 x lo3 m’js’ K2 
D 0.256 x 10m4 m’js 

Physical e 0.8 
properties k, 0.02613 kg m/s3 K 

k, 1.4422 kg m/s* K 

k, 0.616 kg m/s3 K 

M, 28.952 x lO-3 kg/mol 

MIV 18.016 x 1om3 kg/mol 
E 0.43 m3/m3 

‘1KB0 
1.83 x 1O-5 kg/m s 

A9 
2.50 x lo- I4 m* 
2.4418 x lo6 m2/s2 

Ps 2.2 x lo3 kg/m3 
Pw 0.99707 x lo3 kg/m3 

Geom. L 0.01 m 
const. B 0.1839 m 

Empirical a 1.209658 x lo-” ms*/kg 
const. b 5080 K 

; 

0.25 
0.167 x 10m3 kg/s2 K 

L’ 1.0 

“0 121.2 X lo-3 kg/s’ 

Initial Palm 1.01325 x 10’ kg/m s2 
conditions (mini)” 0.17 m3/m3 

(%)s 0.20 m3/m3 

(min& 0.23 m3/m3 

7;“i 294.8 K 

Boundary 
40 

&,O = 0.003548 mol/mol 
conditions & = 0.003548 mol/mol 

T, 
T,, = 298.5 K 
TO, = 298.5 K 

T, 
T,, = 298.5 K 
T,, = 298.5 K 

UF 0.0 mol/m’ s 
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TRANSFERT DE CHALEUR ET D’HUMIDITE DANS DES PLAQUES 
DE BETON 

R&.umb-Pour @dire la distribution d’humiditb dans des plaques de b&ton cn fonction du tcmps, 
on considtre les caractCristiques du matkriau et leur dtpendance. Les ph&omtncs concernant les 
distributions d’humidite, de pression et de tcmperaturc sent coupI&. Unc thkorie de diffusion, avec un 
coefficient de diffusion liniaire ou non, n’est pas adaptPe ;I la description du sCchagc du biton. Un modile 
mathimatique g&&al est bash sur I’Pcoulement irrCversib1e et hors d’bquilibre de la chaleur et de 
I’humiditC. La distribution de la taille des pores peut ctre considt-ree comme le paramitre le plus important 
qui intervient dans le transfert d’humiditk dans un milieu porcux. Bast- sur les m&anismes de transfert 
de chaleur et de masse ct sur I’&quilibre liquide-\,apeur, un systemc d’equations aux dirivees partielles 
est formule pour les transferts simultant-s dc chaleur et de masse pendant I.&at pcndulaire de st-chage. 
Des exemples numkriques. ;i partir de la thborie dCveloppCe, sent illustrks pour Ic sCchage nature1 de 
plaques de biton. IIs montrent quc pendant I’ktat pendulairc de skchage, ii la fois la diffusion et 

1’~vaporation-condensation sent les mecanismes qui gouvernent lc sechage. 

WARMEijBERGANG UND FEUCHTIGKEITSTRANSPORT IN BETONPLATTEN 

Zusammenfasung-Bei der Berechnung der Feuchrigkeitsverteilung in Betonplatten als Funktion der 
Zeit mul3 die AbhHngigkeit des Vorgangs von den wcsentlichen StolYgrGDen betrdchtet werden. Die 
Phtinomene, die Feuchtigkeits-. Druck- und temperaturverteilung bestimmen, sind gekoppelt. Eine 
Diffusionstheorie mit einem linearen oder nichtlinearen Diffusionskoetl-izienten ist zur Beschreibung des 
Trockenvorgangs von abbindendem Beton nicht ausreichend. Bei einer allgemeinen mathematischen 
Beschreibung des Systems mul3 von einer irreversiblcn Nicht-Gleichgewichtsstriimung von W&-me und 
Feuchtigkeit ausgegangen werden. Die Verteilung der Porengrb;De kann als der Parameter mit dem 
grdnten EinfluB aufden Feuchtigkeitstransport in einem poriisen Medium angeschen werden. Ausgehend 
von Staff--und Energieiibertragungsprozessen und dem Fliissigkeits-Dampf-Gleichgewicht wurde rin 
Satz von maflgeblichcn Differentialgleichungen fiir gleichzeitigen WCrmeiibergang und Stopdustausch 
beim Trocknen entwickelt. Mit Hilfe der entwickelten Theorie werden Zahlenbeispiele fiir natiirliches 
Trocknen von Betonplatten erliutert. Die Beispiele zeigen. dal? sowohl Diffusion als such 
Verdampfungs-Kondensationsmechanismen den Vorgang bestimmende Phinomene beim Trocknen sind. 

TEnJIO- M BJIArOOBMEH B 6ETOHHbiX nJiMTAX 

AHHoTaunn- OnpeAeAReTCa paCnpf2AeJIeHIic BJIarH B 6eTOHHbIX IIJIHTaX C COOTBeTCTByIOIIIHMH 

xapaKTepwrAKahw Marepuana. Ilp0~0A~ca coBh4ecwoe paccMorpeHse naneHxA. cafl3amfblx c pac- 
nl3eAeneHHeM EnarW. AaBJIeHAR B TeMIIepaTypbI. YpaBHeHHe AH+$y3,88 C JIHHeI?HblM WI&, HeJIHH&,HbIM 

K03~~WuHeHTOM ne@$y3m He MOEeT HCnOJIbSOBaTbCR nm OnWCaHWIl npouecca CYuIKH TBepnewIuero 

6eToHa. 06ILIee MaTeMaTHWCKOe OnRCaHWe CHCTeMbI AO,IW(HO OCHOBbIBaTbCR Ha HepaaHOBeCHblx 

Heo6pawMbIx npoueccax nepwoca Tenna w anarn. Pacnpenenense nop no pa3Mepabi 5mnfleTc8. 
BepOflTHO, Hae6onee BaTHbIM napaMeTpOM, Bn~~H)Ium4 Ha nepeHoc anarM a nopec~oR cpene. 
C y4&~0~ npoueccoe nepwoca MaccbI 14 3Hepree. a TaKW(C paBHOBeCHR MeKAy ~HAKOCTbIO N 

napOM BbIBeAeHa CHCTeMa OCHOBHbIX AH,$~e~HUHaJIbHbIX ypaBHcH& AJIg COBMeCTHOrO "cp+ZHoCa 

Ten,Ia R MaCCbI B HeyCTaHOBHBUleMCI peW,M'Z CyIIIKI(. npeA,IOLKeHHbIii MeTOA HCnOAb30BaH A,IR 

'IWCJIeHHOr0 paC'+I'a npOueCCa eCTeCTBeHHOti CyIIIKlt 6eTOHHbIX IIJIHT. Pe?y,IbTarbI nOKa3bIBaK)T. VT0 

B HeyCTaHOBHBUleMCR pWF,Me CyIIIKH On~Ae,IaEOLI,IW"IH npOUeCCaMI4 IIBJIRIOTCR KaK A&,@y3HOHHbIff. 

TaK H HCnapHTUIbHOKOHAeHCaUHOHHbIti MeXaHHSMbI. 


